个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
申请人近年来一直从事半导体材料的能源转换研究,主要包括新型太阳能电池、二氧化碳催化转化等研究,并且在器件制备,多相界面分析和计算模拟方面有较为丰富的知识和技术储备。截止目前为止,共发表学术SCI论文100余篇,其中第一作者或通讯文章30余篇,累计引用次数3000余次,H因子30,已被授权4项国家发明专利,承担和主持过国家自然科学基金青年科学基金项目、陕西省教育厅一般专项、国家实验室开放基金、西安市托举人才、贵州省科技厅支撑项目等10余项。
教育经历
2014.09-2018.12:西安交通大学,电子科学与技术,工学博士学位
2017.10-2018.10:布朗大学(美国),化学系,国家公派交流
2011.09-2014.07:兰州大学(保送),材料学,工学硕士学位
2007.09-2011.07:兰州理工大学,无机非金属材料,工学学士学位
工作经历
2020.01-至今:西安建筑科技大学,材料科学与工程学院,副教授
2018.12-2019.12:西安建筑科技大学,材料科学与工程学院,讲师
主讲课程
本科生:材料研究方法
硕士研究生:专业外语
国际留学生:Frontiers of Material Science
博士研究生:计算材料学
2024.09 安康瀛湖
2023.12 照金滑雪
2023.11 西安翠华山
2023.06 2020级毕业生
2023.04 西安高新区烤肉
2022.06 2019级功能材料本科生团建
1. 稀土离子调控电厂烟道气中CO2光热转化研究,陕西省科技厅协同创新项目,2023/01-2024/12
2. 铁电光催化还原烟道气中CO2及其C1产物检测的应用研究,贵州省科学技术厅,2023/04-2026/03
3. GMR传感器中材料与器件的电磁场仿真计算,贵州航天计量测试技术研究所,2022/07-2023/02
4. 贵金属沉积甲脒铅碘纳米晶的制备及其太阳能电池光电转换性能研究,西安市科协青年人才托举计,2022/06-2023/05
5. 基于低能耗绿色建筑一体化光伏系统设计与效率提升研究,西部绿色建筑国家重点实验室自主研究课,2021/01-2022/12
6. 高温热注射法制备系统研制,西安建筑科技大学实验室管理处,2022/01-2022/12
7. Au/HC(NH2)2PbI3异质结纳米晶的可控制备及其光电转换性能增强机制研究,国家自然科学基金青年科学基金项,2021/01-2023/12
8. 非铅钙钛矿纳米晶太阳能电池的制备与研究,陕西省教育厅一般专项,2020/01-2021/12
9. 2D/3D钙钛矿薄膜界面调控太阳能电池研究,西安建筑科技大学校基金,2020/01/-2021/12
10. 西安建筑科技大学博士启动基金,2019/01 -2021/12
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg1. 稀土离子调控电厂烟道气中CO2光热转化研究,陕西省科技厅协同创新项目,2023/01-2024/12,10万
2. 铁电光催化还原烟道气中CO2及其C1产物检测的应用研究,贵州省科学技术厅,2023/04-2026/03,83万
3. GMR传感器中材料与器件的电磁场仿真计算,贵州航天计量测试技术研究所,2022/07-2023/02,16万元
4. 贵金属沉积甲脒铅碘纳米晶的制备及其太阳能电池光电转换性能研究,西安市科协青年人才托举计,2022/06-2023/05,1 万元
5. 基于低能耗绿色建筑一体化光伏系统设计与效率提升研究,西部绿色建筑国家重点实验室自主研究课,2021/01-2022/12,3万元
6. 高温热注射法制备系统研制,西安建筑科技大学实验室管理处,2022/01-2022/12,2 万元
7. Au/HC(NH2)2PbI3异质结纳米晶的可控制备及其光电转换性能增强机制研究,国家自然科学基金青年科学基金项,2021/01-2023/12,24 万元
8. 非铅钙钛矿纳米晶太阳能电池的制备与研究,陕西省教育厅一般专项,2020/01-2021/12,2万元
9. 2D/3D钙钛矿薄膜界面调控太阳能电池研究,西安建筑科技大学校基金,2020/01/-2021/12,0.6万元
10. 西安建筑科技大学博士启动基金,2019/01 -2021/12,30万元
2024年:
[1] Meidan Que, Yutian Li, Hao Yuan, Peng Zhong, Bo Li, Jian Wei, Ping Hu, Lili Gao*, Wei Huang*, Shengzhong Liu*. Surface Doping to Suppress Iodine Ion Migration for Stable FAPbI3 Perovskite Quantum Dot Solar Cells. Small, Accept.
[2] Meidan Que, Shenghui He, Lili Gao,* Boyue Zhang,Yabo Wang, Jin Chen, Bo Li, Wei Huang, and Peng Zhong*. Dual-anchored configuration involving Pb(NO3)2 for effective and stable FAPbI3 quantum dot solar cells, J. Mater. Chem. C, 2024,12, 18391-18400
[3] Meidan Que,* Qizhao Wu, Yutian Li, Hao Yuan, Peng Zhong, Shenghui He, Yuan Xu, Bo Li, Xinyu Ma, and Wenxiu Que*. Construction Au/FAPbI3 Schottky Heterojunction towards a High-Speed Electron Transfer Channel for High-Performance Perovskite Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2024, 16, 34962-34972
[4] Meidan Que*, Yabo Wang, Ruochen Shi, Xun Sun, Jun Xu, Peihong Ma, Yanbo Sun, Jing Guan, Shengxia An. Constructing electron transfer bridge of Pr doping MIL-125(Ti) for high-efficient photoreduction CO2. Applied Catalysis A, General, 2024, 681, 119777.
[5] Que, Meidan*; Yuan, Hao; Wu, Qizhao; He, shenghui; Zhong, Peng; Li, Bo*. Amino Acid Double-Passivation Enhance Quantum Dot Coupling for High-efficient FAPbI3 Perovskite Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2024, 16, 6189-6197.
[6] Que, Meidan*; Ruochen Shi; Xun Sun; Jun Xu; Peihong Ma; Xiangwei Bai; Jin Chen. Preferential Growth and Electron Trap Synergistically Promoting Photoreduction CO2 of Tm Ion Doping Bismuth Titanate Nanosheets. Journal of Colloid & Interface Science, 2024, 661, 493-500.
2023-2020年:
[1] Weihua Cai#, Yabo Wang#, Lei Zhao, Xun Sun, Jun Xu,Jin Chen, Ruochen Shi, Peihong Ma, MeidanQue*. Acid-inducing {110}/{121} facet junction formation boosting theselectivity and activity of CO2 photoreduction by BaTiO3nanoparticles. Journal of Materials Chemistry A, 2023, 11, 21746-21753.
[2] Lili Gao, Ke Hao, Ping Hu, Jing Zhang, Fan Yang,Sheng Huang, Hang Su, Xinxin Zheng, MeidanQue*. Bottom distribution of F-based additives in perovskite films andtheir effects on photovoltaic performance. ACS Applied Materials &Interfaces, 2023, Accepted.
[3] Yueying Wang, Jin Chen*, Meidan Que*, Qizhao Wu, Xinle Wang, Yuxi Zhou, Yuzhao Ma, YanjunLi, Xiaofeng Yang. MXene-derived Ti3C2Tx/Bi4Ti3O12heterojunction photocatalyst for enhanced degradation of tetracyclinehydrochloride, rhodamine B, and methyl orange under visible-light irradiation. AppliedSurface Science, 2023, 639, 158270.
[4] Weihua Cai#, Xinyu Ma#, Jin Chen, Ruochen Shi, YaboWang, Yawei Yang*, Dengwei Jing, Hudie Yuan, Jing Du*, Meidan Que*. Synergy of oxygen vacancy and piezoelectricity effectpromotes the CO2 photoreduction by BaTiO3. AppliedSurface Science, 2023, 619(15), 156773.
[5] MeidanQue, Boyue Zhang, Jin Chen, Hao Yuan, Qizhao Wu,Huayan Wang, Dongyun Gui, Bo Li. Dual Ions Passivating FAPbBr3 PerovskiteQuantum Dot Films via a Vacuum Drying Method for Stable and Efficient SolarCells with an Ultrahigh Open-Circuit Voltage of over 1.67 V. ACS Applied EnergyMaterials, 2023, 6(6), 3486-3494.
[6] Muhammad Ali Raza, Huiying Tian, Ziyi Shui, Liangliang Zhu*, MeidanQue*, Xi Chen. Hierarchical ternary layered double hydroxide/graphiticcarbon nitride heterostructures as visible-light photocatalysts for efficientreduction of CO2. Colloids and Surfaces A: Physicochemical andEngineering Aspects, 2022, 655, 130249.
[7] Muhammad Ali Raza, Weihua Cai, Huiying Tian, Meidan Que*,Liangliang Zhu*, Xi Chen. Hierarchical flower-like ternary composite ofNiFeCr/PCN/CeO2 towards efficient photocatalytic reduction of CO2.Journal of Physics and Chemistry of Solids, 2022, 171, 111027.
[8] Zhikang Liu, Jin Chen*, Meidan Que*, Huiqi Zheng, Lingfu Yang,Hudie Yuan, Yuzhao Ma, Yanjun Li, Xiaofeng Yang. 2D Ti3C2TxMXene/MOFs Composites Derived CoNi Bimetallic Nanoparticles for Enhanced MicrowaveAbsorption. Chemical Engineering Journal, 2022, 450, 138442.
[9] Meidan Que*, Weihua Cai, Yang Zhao,Yawei Yang, Boyue Zhang, Sining Yun, Jin Chen*, Gangqiang Zhu. 2D/2D SchottkyHeterojunction of In-situ Growth FAPbBr3/Ti3C2Composites for Enhancing Photocatalytic CO2 Reduction. Journal ofColloid and Interface Science, 2022, 610, 538-545. (ESI高被引论文)
[10] Huiying Tian, Kai Wang, Ziyi Shui, Muhammad Ali Raza, Hang Xiao, MeidanQue*, Liangliang Zhu*, Xi Chen*. Enhanced CO2 electroreductionon Co Active Site of Cobalt Phthalocyanine by Electronic Effect. MaterialsLetters, 2022, 310, 131482.
[11] Meidan Que*, Boyue Zhang, Jin Chen*, Xingtian Yin, SiningYun*, Carbon-Based Electrode for Perovskite Solar Cells. Materials Advances,2021, 2, 5560-5579. https://doi.org/10.1039/D1MA00352F
[12] Meidan Que*,Weihua Cai, Jin Chen, Liangliang Zhu, Yawei Yang*. Recent Advances in g-C3N4Composites Within Four Types of Heterojunctions for Photocatalytic CO2Reduction. Nanoscale, 2021, 13, 6692-6712. (ESI高被引论文)
[13] Ali Raza Muhammad, Feng Li, Meidan Que*, Liangliang Zhu*, XiChen*. Photocatalytic Reduction of CO2 by Halide Perovskite: RecentAdvances and Future Perspectives. Materials Advances, 2021, 2, 7187–7209.
[14] MeidanQue*, Yang Zhao, Yawei Yang,Longkai Pan, Weihua Cai, Wanying Lei, Hudie Yuan, Jin Chen*, Gangqiang Zhu,Anchoring of Formamidinium Lead Bromide Quantum Dots on Ti3C2Nanosheets for Efficient Photocatalytic Reduction of CO2. ACSApplied Materials & Interfaces, 2021, 13(5), 6180-6187.
[15] Huiqi Zheng, XiaorongMeng, Jin Chen*, Meidan Que*, Wendong Wang, XinweiLiu,Lingfu Yang,YangZhao, In-situ Phase Evolution of TiO2/Ti3C2TxHeterojunction for Enhancing Adsorption and Photocatalytic Degradation, AppliedSurface Science, 2021545, 149031.
[16] Meidan Que,Yang Zhao, Longkai Pan, Yawei Yang, Zhijian He, Hudie Yuan, Jin Chen*,Gangqiang Zhu*. Colloidal formamidinium lead bromide quantum dots forphotocatalytic CO2 reduction. Materials Letters. 2021, 282, 128695.
[17] Yang Zhao, Meidan Que*, Jin Chen*, Chunli Yang.MXene as co-catalyst for solar-driven photocatalytic reduction of CO2.Journal of Materials Chemistry C. 2020, 8, 16258-16281.
[18] Yuxiao Guo, XingtianYin*, Meidan Que*, Jingzhou Zhang, SenWen, Dan Liu, Haixia Xie, Wenxiu Que*. Quantum dot-modified CsPbIBr2perovskite absorber for efficient and stable photovoltaics. OrganicElectronics. 2020, 86, 10917.
[19] Jin Chen*, Huiqi Zheng,Yang Zhao, Meidan Que*, Xiping Lei, Ke Zhang,Yusi Luo. Preparation of facet exposed TiO2/Ti3C2Tx composites with enhancedphotocatalytic activity. Journal of Physics and Chemistry of Solids. 2020, 145,109565.
[20] Jin Chen*, Huiqi Zheng,Yang Zhao, Meidan Que*, Wendong Wang, XipingLei. Morphology and photocatalytic activity of TiO2/MXene compositesby in-situ solvothermal method. Ceramics International. 2020, 46, 20088-20096.
[21] MeidanQue, Liangliang Zhu, Yuxiao Guo, Wenxiu Que*, SiningYun*. Toward perovskite nanocrystalline solar cells: progress and potential.Journal of Materials Chemistry C, 2020, 8, 5321-5334.
2020年以前
[1] Meidan Que, Zhenghong Dai, Hanjun Yang, Hua Zhu,Yingxia Zong, Wenxiu Que*, Nitin P Padture*, Yuanyuan Zhou*, Ou Chen*.Quantum-dot-induced Cesium-rich Surface Imparts Enhanced Stability to FormamidiniumLead Iodide Perovskite Solar Cells. ACS Energy Letters, 2019,4, 1970-1975. DOI: 10.1021/acsenergylett.9b01262
[2] MeidanQue, Wei Chen, Peng Chen, et al. Effects of Zn2+ion doping on hybrid perovskite crystallization and photovoltaic performance ofsolar cells. Chemical Physics, 2019, 517, 80-84.
[3] MeidanQue, Liangliang Zhu, Yawei Yang, et al. Tunableplasmon-enhanced broadband light harvesting for perovskite solar cells. Journalof Power Sources, 2018, 383, 42-49.
[4] MeidanQue, Wenxiu Que, Ting Zhou, et al. Enhancedphotoluminescence property of sulfate ions modified YAG: Ce3+phosphor by co-precipitation method. Journal of Rare Earths, 2017, 3(35),217-222.
[5] MeidanQue, Wenxiu Que, and Xingtian Yin. Enhanced sunlightharvesting of dye-sensitized solar cells through the insertion of a (Sr, Ba,Eu)2SiO4-TiO2 composite layer. MaterialsResearch Bulletin, 2016, 83, 19-23.
[6] MeidanQue, Wenxiu Que, Xingtian Yin, et al. Enhancedconversion efficiency in perovskite solar cells by effectively utilizing nearinfrared light. Nanoscale, 2016, 8(30), 14432-14437.
[7] MeidanQue, Wenxiu Que, Ting Zhou, et al. Photoluminescenceand energy transfer of YAG: Ce3+, Gd3+, Bi3+.Journal of Advanced Dielectrics, 2016, 6, 1650029.
[8] Xingtian Yin, Peng Chen, Meidan Que, et.al. Highly efficient flexible perovskite solar cellsusing solution-derived NiOx hole contacts. ACS Nano, 2016, 10(3),3630-3636. (ESI高被引论文)
[9] Xingtian Yin, MeidanQue, Yonglei Xing, et al. Solution-induced morphology change oforganic-inorganic hybrid perovskite films for high efficiency inverted planarheterojunction solar cells. Electrochimica Acta, 2016, 191, 750-757. (ESI高被引论文)
[10] Xingtian Yin, MeidanQue, Wenxiu Que, et al. High efficiency hysteresis-less inverted planarheterojunction perovskite solar cells with a solution-derived NiOxhole contact layer. Journal of Material Chemistry A, 2015, 3(48), 24495-24503.
[11] Zhipeng Ci, MeidanQue, Yuhua Wang, et.al. Enhanced photoluminescence and thermal propertiesof size mismatch in Sr2.97-x-yEu0.03MgxBaySiO5for high-power white light-emitting diodes. Inorganic Chemistry, 2014, 53,2195.
[12] MeidanQue, Zhipeng Ci, Yuhua Wang, et al. Synthesis andphotoluminescence of a new chlorogermanate phosphor Ca8Mg(GeO4)4Cl2:Eu2+. Journal of the American Ceramic Society, 2013, 96(1), 223-227.
[13] MeidanQue, Zhipeng Ci, Yuhua Wang, et al. Crystal structureand luminescence properties of a cyan emitting Ca10(SiO4)3(SO4)3F2:Eu2+ phosphor. CrystEngComm, 2013, 15, 6389-6394.
[14] MeidanQue, Zhipeng Ci, Yuhua Wang, et al. Synthesis andluminescent properties of Ca2La8 (GeO4)6O2:RE3+ (RE3+= Eu3+, Tb3+, Dy3+,Sm3+, Tm3+) phosphors. Journal of Luminescence, 2013,144, 64-68.
文件上传中...