资源工程学院-李新宏导师介绍

更新于 2025-05-14 导师主页
李新宏 教授 硕,博士生导师
资源工程学院
安全科学与工程 ,矿业工程
能源管道风险与可靠性、动态及智能化风险评估理论与方法
lixinhong@xauat.edu.cn

硕士招生专业

1
安全科学与工程
学术型硕士
2
资源与环境
专业学位硕士

教育背景:



1.2014/09-2019/06中国石油大学(华东),安全科学与工程,博士


2.2010/09-2014/06中国石油大学(华东),安全工程,学士



工作经历:



2019年06月至今,西安建筑科技大学资源工程学院安全工程系教师



社会兼职:


1. 中国钢结构协会海洋钢结构分会理事

2. 西安市科技专家

3. 中国安全生产科学技术青年编委

4. 安全与环境学报青年编委

5. 西安石油大学学报(自然科学版)青年编委

6. 油气储运期刊青年编委

7. 海洋工程装备与技术期刊青年编委

8. 石油科学通报执行编委

9. Petroleum Science青年编委

10. Processes客座管理编辑

11. Process Safety and Environmental Protection客座管理编辑、学科编辑

12. Journal of Hazardous materials、Reliability Engineering and System Safety、Process Safety and Environmental Protection、Journal of Loss Prevention in the Process Industries、Fire Safety Journal、Ocean Engineering、Applied Ocean Research、中国安全科学学报、中国安全生产科学技术、油气储运、油气田地面工程等国内外学术期刊审稿人

13. 中国指挥与控制协会安全防护与应急管理专业委员会委员

14. AIChE会员

15. 西安市特种设备安全节能环保协会专家委员会委员

16. 中国石油学会石油储运专业委员会青年工作部委员




展开更多

科研项目


1. 国家自然科学基金面上项目(52471300):2025/01-2028/12,主持

2. 国家重点研发计划子课题(2023YFC2809004):2023/12-2027/11,主持

3. 国家自然科学基金青年项目(52004195):2021/01-2023/12,主持

4. 陕西省重点研发计划项目(2024SF-YBXM-662):202401-202512,主持

5. 中国博士后科学基金资助项目(2020M673355):2020/04-2022/03,主持 

6. 陕西省社科界重大理论与现实问题研究项目(2020Z188):2020/01-2021/05,主持

7. 陕西省教育厅专项科研计划项目(20JK0729):2020/01- 2021/12,主持

8. 海岸和近海工程国家重点实验室开放基金(LP2021):2020/08-2022/07,主持

9. 石油管材及装备材料服役行为与结构安全国家重点实验室开放基金(2020K-5):2020/08-2020/12,主持

10. 石油管材及装备材料服役行为与结构安全国家重点实验室开放基金(2022K-6): 2022/09-2023/6,主持

11. 石油管材及装备材料服役行为与结构安全国家重点实验室开放基金(2023K-02): 2023/02-2023/09,主持

12. 海洋物探及勘探设备国家工程实验室开放基金(20CX02315A):2020/05-2022/04,主持

13. 陕西省科学技术协会:西部能源、环境与安全青年学者论坛,2021/06-2021/12,主持

14. 陕西省高校科协青年人才托举计划项目(20220429):2023/01-2024/12,主持

15. 西安市社会科学规划基金项目(23GL29):2023/05-2024/04,主持


展开更多

研究成果

[1] Li Xinhong, Xue Long, Zhang Hao, et al. Estimating Erosion Degradation of Deep-Sea Mining Transportation Pipes Using a Discrete Phase Simulation Approach [J]. Journal of Pipeline Systems Engineering and Practice, 2025, 16(2): 4024078.

[2] Li Xinhong, Liu Yabei, Zhang Renren, et al. Probabilistic failure assessment of oil and gas gathering pipelines using machine learning approach [J]. Reliability Engineering & System Safety, 2025, 256: 110747.

[3] Li Xinhong, Wang Chenyu, Zhang Yuhang. Investigation of Characteristics of Acoustic Emission Signals Resulting from a Subsea Gas Pipeline Leak [J]. Journal of Pipeline Systems Engineering and Practice, 2025, 16(1): 4024065.

[4] Li Xinhong, Li Runquan, Han Ziyue, et al. An intelligent monitoring approach for urban natural gas pipeline leak using semi-supervised learning generative adversarial networks[J]. Journal of Loss Prevention in the Process Industries, 2024,92: 105476.

[5] Li Xinhong, Ning Xin, Ma Jie, et al. Investigating the evolution path of urban natural gas pipeline accidents using a complex network approach [J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2024, 10(4): 6024005.

[6] Li, Xinhong., Chi Shengyou, Han, Ziyue, Chen Guoming. Failure pressure assessment of subsea pipelines with multiple corrosion defects under combined loadings [J]. Journal of Pipeline Systems Engineering and Practice, 2025,16(1): 4024052.

[7] Li, Xinhong., Ning, Xin., Xu, Ziqiang., Liu, Peihua., & Han, Ziyue. Vulnerability assessment of buildings adjacent to natural gas pipelines under explosion accident [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2024, 46(1): 12886-12900.

[8] Li Xinhong., Tian Fafu., Wang Jianjun., Chen Guoming. An ELM data-driven model for predicting erosion rate of string in underground compressed air storage [J]. Process Safety and Environmental Protection, 2024, 185: 761-771.

[9] Li Xinhong, Liu Yabei, Han Ziyue, et al. A risk-based maintenance decision model for subsea pipeline considering pitting corrosion growth[J]. Process Safety and Environmental Protection, 2024,184: 1306-1317.

[10] Li Xinhong, Wang Zhaoge, Chen Guoming. Modeling underwater plumes of gas released from seafloor soil: A comparison of different gases[J]. Process Safety and Environmental Protection, 2024,184: 950-960.

[11] Han, Ziyue., Li, Xinhong*., Abbassi Rouzbeh., & Chen, Guoming. A probabilistic modeling approach for life extension decision-making of aging subsea pipelines[J]. Ocean Engineering, 2024, 294: 116786.

[12] Li Xinhong, Liu Yazhou, Chen Guoming, Abbassi Rouzbeh. Dynamic risk-based methodology for economic life assessment of aging subsea pipelines[J]. Ocean Engineering, 2024, 294: 116687.

[13] Li Xinhong, Ma Jie. Investigation of urban natural gas pipeline leak and resulting dispersion in a semi-closed space: A case of accident in Shiyan, China [J]. Process Safety and Environmental Protection, 2024, 183: 459-475.

[14] Li, Xinhong., Zhao, Han., Zhang, Renren., & Wang, Jianjun. Risk area classification for flammable gas dispersion in natural gas distribution station [J]. Journal of Loss Prevention in the Process Industries, 2023, 86, 105202.

[15] Li, Xinhong., Zhang, Yuhang., Zhang, Luyao., & Han, Ziyue. A probabilistic assessment methodology for pitting corrosion condition of offshore crude oil pipelines[J]. Ocean Engineering, 2023, 288: 116112.

[16] Li Xinhong., Ma, Jie., Pasman, Hans., & Zhang, Renren. (2023). Dynamic risk investigation of urban natural gas pipeline accidents using Stochastic Petri net approach. Process Safety and Environmental Protection, 178, 933-946.

[17] Li Xinhong., Guo, Mengmeng., & Chen, Guoming. (2023). A hybrid algorithm for inspection planning of subsea pipelines subject to corrosion-fatigue degradation. Process Safety and Environmental Protection, 178, 685-694.

[18] Han, Ziyue., Li, Xinhong*., & Chen, Guoming. (2023). A stochastic model for RUL prediction of subsea pipeline subject to corrosion-fatigue degradation. Process Safety and Environmental Protection, 178, 739-747.

[19] Han, Ziyue., Li, Xinhong*., Zhang, Renren., Yang, Ming., & Seghier, M. E. A. B. (2023). A dynamic condition assessment model of aging subsea pipelines subject to corrosion-fatigue degradation. Applied Ocean Research, 139, 103717.

[20] Li Xinhong, Hu, Yaping., & Han, Ziyue. (2023). Fatigue condition assessment of subsea pipelines under vortex induced vibration and cyclical lateral displacement. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 9941-9957.

[21] Li Xinhong, Jia Ruichao, Zhang Renren. A data-driven methodology for predicting residual strength of subsea pipeline with double corrosion defects[J]. Ocean Engineering, 2023, 279: 114530.

[22] Li Xinhong, Ma Jie, Han Ziyue, et al. Application of game theory in risk management of urban natural gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105037.

[23] Li Xinhong, Zhu Yujiao, Wang Jingwen, Zhang Renren, & Chen Guoming. Dispersion modeling of underwater oil released from buried subsea pipeline considering current and wave. Ocean Engineering, 2023, 272, 113924.

[24] Li Xinhong, Wang Jingwen. Modelling underwater dispersion of gas released from seabed soil considering current and wave[J]. Process Safety and Environmental Protection, 2023,171: 260-271.

[25] Li Xinhong, Jia Mingrui, Zhang Renren, et al. Dispersion modeling and assessment of natural gas containing hydrogen released from a damaged gas transmission pipeline[J]. International Journal of Hydrogen Energy, 2022,47(83): 35365-35385.

[26] Li Xinhong, Liu Yazhou, Abbassi Rouzbeh, et al. A Copula-Bayesian approach for risk assessment of decommissioning operation of aging subsea pipelines [J]. Process Safety and Environmental Protection, 2022, 167: 412-422.

[27] Li Xinhong, Abbassi Rouzbeh, Meng Huixing. Safety and risk analysis in digitalized process operations[J]. Process Safety and Environmental Protection, 2022,166: 212-213.

[28] Li Xinhong, Jingwen Wang, Chen Guoming. A machine learning methodology for probabilistic risk assessment of process operations: A case of subsea gas pipeline leak accidents[J]. Process Safety and Environmental Protection, 2022, 165: 959-968.

[29] Li Xinhong, Guo Mengmeng, Zhang Renren, et al. A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach[J]. Ocean Engineering, 2022, 261: 112062.

[30] Li Xinhong, Zhao Han, Zhang Renren. Data-driven dynamic failure assessment of subsea gas pipeline using process monitoring data[J]. Process Safety and Environmental Protection, 2022,166: 1-10.

[31] Li Xinhong, Han Ziyue, Yazdi Mohamed, et al. A CRITIC-VIKOR based robust approach to support risk management of subsea pipelines[J]. Applied Ocean Research, 2022,124: 103187.

[32] Li Xinhong, Zhu Yujiao, Abbassi Rouzbeh, et al. A probabilistic framework for risk management and emergency decision-making of marine oil spill accidents [J]. Process Safety and Environmental Protection, 2022, 162: 932-943.

[33] Li Xinhong, Jingwen Wang, Abbassi Rouzbeh, et al. A risk assessment framework considering uncertainty for corrosion-induced natural gas pipeline accidents[J]. Journal of Loss Prevention in the Process Industries, 2022, 75: 104718.

[34] Li Xinhong, Jia Ruichao, Zhang Renren, et al. A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines[J]. Reliability Engineering & System Safety, 2022,219: 108231.

[35] Li Xinhong, Khan Faisal, Yang Ming, et al. Risk assessment of offshore fire accidents caused by subsea gas release[J]. Applied Ocean Research, 2021,115:102828.

[36] Li Xinhong, Zhang Luyao, Khan Faisal, et al. A data-driven corrosion prediction model to support digitization of subsea operations[J]. Process Safety and Environmental Protection, 2021,153:413-421.

[37] Li Xinhong, Zhang Yi, Abbassi Rouzbeh, et al. Probabilistic fatigue failure assessment of free spanning subsea pipeline using dynamic Bayesian network[J]. Ocean Engineering, 2021,234:109323.

[38] Li Xinhong, Zhang Luyao, Zhang Renren, et al. A semi-quantitative methodology for risk assessment of university chemical laboratory[J]. Journal of Loss Prevention in the Process Industries, 2021,72:104553.

[39] Li Xinhong, Zhang Yi, Abbassi Rouzbeh, et al. Dynamic probability assessment of urban natural gas pipeline accidents considering integrated external activities[J]. Journal of Loss Prevention in the Process Industries, 2021,69:104388.

[40] Li Xinhong, Han Ziyue, Zhang Renren, et al. Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach [J]. International Journal of Hydrogen Energy, 2020, 45(53): 29630-29642.

[41] Li Xinhong, Han Ziyue, Zhang Renren, et al. An integrated methodology to manage risk factors of aging urban oil and gas pipelines [J]. Journal of Loss Prevention in the Process Industries, 2020, 66, 104154.

[42] Li Xinhong, Abbassi Rouzbeh, Chen Guoming, Wang Qingsheng. Modeling and analysis of flammable gas dispersion and deflagration from offshore platform blowout [J]. Ocean Engineering, 2020, 201: 107146.

[43] Li Xinhong, Han Ziyue, Yang Shangyu, Chen Guoming. Underwater gas release modeling and verification analysis[J]. Process Safety and Environmental Protection, 2020, 137: 8-14.

[44] Li Xinhong, Chen Guoming, Khan Faisal, et al. Dynamic risk assessment of subsea pipelines leak using precursor data[J]. Ocean Engineering, 2019, 178: 156-169.

[45] Li Xinhong, Yang Ming, Chen Guoming. An integrated framework for subsea pipelines safety analysis considering causation dependencies[J]. Ocean Engineering, 2019, 183: 175-186.

[46] Li Xinhong, Chen Guoming, Faisal Khan. Analysis of underwater gas release and dispersion behavior to assess subsea safety risk[J]. Journal of hazardous materials, 2019,367:676-685.

[47] Li Xinhong, Chen Guoming, Chang Yuanjiang. Risk-based operation safety analysis during maintenance activities of subsea pipelines[J]. Process Safety and Environmental Protection, 2019,122:247-262. 

[48] Li Xinhong, Chen Guoming, Zhu Hongwei, et al. Gas dispersion and deflagration above sea from subsea release and its impact on offshore platform[J]. Ocean Engineering, 2018, 163:157-168.

[49] Li Xinhong, Chen Guoming, Zhu Hongwei, et al. Modelling and assessment of accidental oil release from damaged subsea pipelines [J]. Marine Pollution Bulletin,2017,123(1-2),133-141. 

[50] Li Xinhong, Chen Guoming, Zhu Hongwei. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network[J]. Process Safety & Environmental Protection, 2016, 103:163-173.

[51] Li Xinhong, Zhu Hongwei, Chen Guoming, et al. Optimal maintenance strategy for corroded subsea pipelines[J]. Journal of Loss Prevention in the Process Industries, 2017, 49:145-154. 

[52] Li Xinhong, Chen Guoming, Zhu Hongwei, et al. Quantitative risk assessment of submarine pipeline instability[J]. Journal of Loss Prevention in the Process Industries, 2017, 45:108-115. 

[53] Li Xinhong, Chen Guoming, Zhang Renren, et al. Simulation and assessment of underwater gas release and dispersion from subsea gas pipelines leak[J]. Process Safety and Environmental Protection, 2018, 119: 46-57.

[54] Li Xinhong, Chen Guoming, Jiang Shengyu, et al. Developing a dynamic model for risk analysis under uncertainty: Case of third-party damage on subsea pipelines[J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 289-302.

[55] Li Xinhong, Chen Guoming, Zhu Hongwei, et al. Simulation and assessment of gas dispersion above sea from a subsea release: A CFD-based approach [J]. International Journal of Naval Architecture and Ocean Engineering, 2019,11(1):353-363.

[56] He Rui, Li Xinhong, Chen Guoming, et al. A quantitative risk analysis model considering uncertain information[J]. Process Safety and Environmental Protection, 2018, 118: 361-370.

[57] He, Rui., Li, Xinhong., Chen, Guoming., et al. (2020). Generative adversarial network-based semi-supervised learning for real-time risk warning of process industries. Expert Systems with Applications, 150, 113244.

[58] Shi, Jihao., Li, Xinhong., Khan, Faisal., et al. (2019). Artificial bee colony based bayesian regularization artificial neural network approach to model transient flammable cloud dispersion in congested area. Process Safety and Environmental Protection, 128, 121-127.

[59] Gu Qinghua, Chang Yinxin, Li Xinhong*, Chang Zhaozhao, Feng Zhidong. A novel F-SVM based on FOA for improving SVM performance [J]. Expert Systems with Applications, 2020, 113713.

[60] Geng Zhiyuan, Li Xinhong*, Chen Guoming, et al. Experimental and numerical study on gas release and dispersion from underwater soil [J]. Process Safety and Environmental Protection, 2021,149:11-21.

[61] 李新宏, 付雅倩, 刘亚洲, 等. 基于Copula-BN的海上船舶碰撞风险评估方法[J]. 中国安全科学学报, 2023, 33(09): 204-213.

[62] 胡亚平, 张认认, 李新宏, 等. 基于贝叶斯参数学习的海底原油管道腐蚀状态评估[J]. 中国安全生产科学技术, 2023,19(11): 93-99.

[63] 贾明汭, 张认认, 李新宏, 等. 氢气输送管道微观失效的分子动力学仿真研究[J]. 中国安全生产科学技术, 2023,19(09): 123-128.

[64] 李新宏, 贾明汭, 韩子月, 等. 穿越城市生活区的天然气管道泄漏连锁爆燃后果评估研究[J]. 中国安全生产科学技术, 2022,18(08): 183-188.

[65] 李新宏, 陈国明, 李秉军. 海洋油气管道泄漏事故应急管理体系构建研究[J]. 油气田地面工程, 2022, 41(05): 1-5.

[66] 李新宏, 朱玉娇, 李成成, 等. 贫数据条件下海底电缆故障概率评估方法[J]. 中国安全生产科学技术, 2022, 18(06): 224-229.

[67] 李新宏, 王靖雯, 朱玉娇, 等. 海洋水合物开采分解气体泄漏运移后果评估[J]. 中国安全科学学报, 2021,31(11): 114-119.

[68] 李新宏, 张毅, 韩子月, 等. 基于风险与成本的海洋溢油事故应急控制决策[J]. 中国安全科学学报, 2021,31(04):184-190.

[69] 李新宏, 张毅, 韩子月, 等. 天然气管道失效致因与事故链模型研究[J]. 油气田地面工程, 2021,40(04): 1-7.

[70] 李新宏, 韩子月, 卢才武, 等. 老龄城镇油气管道失效风险评价方法[J].中国安全科学学报, 2020, 30(2): 93-98.

[71] 李新宏, 韩子月, 耿志远, 等. 基于实验与仿真的三维水下气体泄漏预测与安全评估研究[J]. 中国安全生产科学技术, 2020,16(1):1-5.

[72] 李新宏, 韩子月,陈国明. 水下气体泄漏海面火灾后果预测及评估[J]. 中国安全科学学报,2019, 29(12):61-66.

[73] 李新宏, 陈国明, 朱红卫, 等. 基于欧拉-拉格朗日方法的水下气体泄漏扩散行为研究[J]. 中国石油大学学报(自然科学版), 2019,43(01):131-137.  

[74] 李新宏, 朱红卫, 陈国明,等. 海底油气管道泄漏事故风险分析的贝叶斯动态模型[J]. 中国安全科学学报, 2015, 25(4):75-80.

[75] 李新宏, 陈国明, 朱红卫, 等. 海底输气管道泄漏天然气扩散风险研究[J]. 石油科学通报, 2016, 1(3): 390-400.

[76] 李新宏, 朱红卫, 陈国明,等. 海底管道泄漏天然气扩散规律数值模拟[J]. 油气储运, 2016, 35(2):215-220.

[77] 李新宏, 李秀美, 陈国明,等. 2000m超深水水下分离器泄漏油气扩散特性研究[J]. 中国安全生产科学技术, 2016, 12(1):38-43.

[78] 李新宏, 朱红卫, 陈国明,等. 海底管道泄漏油气扩散规律数值仿真与对比分析[J]. 安全与环境学报, 2017, 17(2):608-614.

[79] 李新宏, 陈国明, 徐长航,等. 水深对海底管道泄漏水下气体扩散行为的影响研究[J]. 中国安全生产科学技术, 2018, 14(5), 17-22.

[80] 李新宏, 陈国明, 朱红卫. 海底油气管道腐蚀失效风险预警方法研究[J]. 中国安全科学学报, 2017(7):163-168.

[81] 李新宏, 朱红卫, 陈国明,等. 公路隧道内CNG管束气瓶车泄漏天然气扩散CFD仿真[J]. 中国安全生产科学技术, 2016, 12(12):138-143.


展开更多

学校介绍


  西安建筑科技大学坐落在历史文化名城西安,南眺驰名中外的唐代大雁塔,北临举世闻名的明代长安城墙。学校总占地4300余亩,校园环境优美,办学氛围浓郁。学校办学历史源远流长,其办学历史最早可追溯到始建于1895年的北洋大学,积淀了我国近代高等教育史上最早的一批土木、建筑、环境类学科精华。1956年,在全国第三次高等学校院系调整时由原东北工学院、西北工学院、青岛工学院和苏南工业专科学校的土木、建筑、环境类系(科)整建制合并而成,时名西安建筑工程学院。1959年和1963年,曾先后易名为西安冶金学院、西安冶金建筑学院。1994年3月8日,经国家教委批准,更名为西安建筑科技大学,是公认的中国最具影响力的土木建筑类院校之一及原冶金部重点大学。

  西安建筑科技大学继承和发扬了百余年来所形成的专业优势,经过并校50余年来历代建大师生的不懈拼搏,现已发展成为了一所具有深厚文化底蕴,浓郁学术氛围,优美校园环境,并在国内外享有较高声誉的,以土木、建筑、环境、材料学科为特色,工程学科为主体,兼有文、理、经、管、艺、法等学科的多科性大学。学校现有16个院(系),60个本科专业面向全国第一批招生,有权招收保送生,实行本硕连读。除建筑学、城市规划和景观学三个专业为五年学制外,其它本科专业均为四年制,建筑学、城市规划、土木工程、环境工程、建筑环境与设备工程、工程管理、材料科学与工程、给水排水工程、艺术设计9个专业为国家级特色专业。建筑学、城市规划、土木工程、建筑环境与设备工程、环境工程、工程管理、交通工程、给水排水工程、环境科学、冶金工程、材料科学与工程、信息管理与信息系统、艺术设计、社会体育(体育建筑管理)、会计学等15个本科专业为陕西省特色专业。学校现有国家高等学校教学指导委员会成员18人。

  学校现有教职工2600余名,其中,中国工程院院士4人,中国科学院院士1人,南非科学院院士1人,具有高级职称的教师、工程技术人员及研究人员近800名,形成了一支阵容整齐、结构合理、素质优秀、实力雄厚的师资队伍。目前,学校在校各类学生近40000人,其中本科生20000余人,研究生近6000人,职业技术学院、继续教育学院在册学生近14000人。

  西安建筑科技大学是国务院首批批准有权授予博士、硕士和学士学位的单位。学校设立研究生院,现有一级学科博士点7个、二级学科博士点31个,一级学科硕士点25个、二级学科硕士点94个,硕士点基本涵盖学校所有本科专业。学校拥有建筑学、土木工程、环境科学与工程、材料科学与工程、城乡规划学、风景园林学和管理科学与工程7个博士后流动站,结构工程、环境工程、建筑设计及其理论三个学科为国家级重点学科。

  半个多世纪以来,西安建筑科技大学铸就了“传承文明、创造未来、育材兴国、科技富民”的办学宗旨,形成了“自强、笃实、求源、创新”的校训和“为人诚实、基础扎实、作风朴实、工作踏实”的优良校风,先后为国家培养了21万余名德才兼备的栋梁之才,研发了大量高水平的科研成果,为国家经济社会建设和行业发展做出了突出的贡献。

  近年来,学校以“提高教育教学质量求生存、狠抓学科建设上水平、优化资源配置求效益、深化体制改革促发展”为办学思路,全面实施校园建设工程、教育教学质量工程、学科建设工程、人才队伍建设工程、创新工程、文化建设工程等六大奠基工程,使得学校步入了和谐快速发展的道路,学校综合办学实力大大增强,相继实现了院士、国家重点学科、一级学科博士点、博士后流动站与博士点数、硕士点数、学校综合排名、校园面积、年经费到款额等衡量学校办学层次重要指标零的突破或翻番。学校顺利入选教育部首批“卓越工程师教育培养计划”实施学校、全国64所“研究生专业学位教育综合试点单位”、“国家高水平大学公派研究生项目平台和优秀本科生国际交流项目实施院校”,荣获全国50所“工程硕士教育创新院校”和全国60所“毕业生就业典型经验高校”。2011年,学校被中共中央授予“全国先进基层党组织”荣誉称号。

  “十二五”期间,学校将乘科教兴国、西部大开发的春风,全面贯彻落实《国家中长期教育改革和发展规划纲要(2010-2020年)》和《陕西省贯彻<国家中长期教育改革和发展纲要(2010-2020年)>实施意见》,坚持“传承文明、开创未来、育材兴国、科技富民”的办学宗旨,坚持“提高教育教学质量求生存,狠抓学科建设上水平,优化资源配置求效益,深化体制改革促发展”的总体发展思路,抢抓机遇,迎难而上,振奋精神,开拓进取,努力创建特色鲜明的国际知名国内高水平大学。

展开更多

西安建筑科技大学2014年研究生学费及奖助学金政策

学校从2008年开始面向统招硕士、博士实行研究生奖助学金政策。对于在入学考试中综合成绩优秀的学生,学校按照一定的比例,给予免去学费一半或全部的学业奖学金。此外,统招研究生还可参加优秀奖学金的评定,按照学位层次及评定等级的不同,可享受100元/月至400元/月不等的优秀奖学金。同时学校还设有金诚信奖学金、长江精工钢构奖学金、宝钢奖学金、西飞铝业建筑奖(助)学基金、高科集团·天地源奖学金、海螺奖学金等数十项社会企业奖学金。并设有研究生“三助”、研究生优秀论文奖等。
展开更多
点赞
意向报名 前往导师主页